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1 An Approach to the Exact Solution

Solving the problem of the monoelectronic H+
2 molecule is equivalent to solving the mo-

noelectronic part of the problem of the H2 molecule with its two electrons based on the
independent electrons approximation.

Figure 1: Schematic representation of the H+
2 ion problem

The Born-Oppenheimer approximation states that one can decouple nuclear motion from
electronic motion due to the large mass difference between the nuclei and electrons. Under
this approximation, one can write the time-independent Schrödinger equation as follows:

(Ĥel + V̂NN)Ψ = EΨ (1)

with

Ĥel = − ~2

2me

∇2 − e2

4πε0
(

1

rA
+

1

rB
)

and

V̂NN =
e2

4πε0a0

Here, V̂NN is a constant relative to the electron position.

(1)⇔ ĤelΨ = EelΨ (2)

with Eel = E − VNN which is a purely electronic energy.

One can solve the monoelectronic Schrödinger equation and then add the internuclear repul-
sion energy to determine to total energy of the system E, by utilizing an elliptical coordinate
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system. However, calculating the Laplace operator in these coordinates is complex and the
resolution must be done numerically for every value of a0. Two energetic functions are
obtained. This means that for each value of a0 there are two possible states.

Figure 2: Different energy levels obtained for the H+
2 ion as a function of internuclear distance

2 Molecular Orbital Theory Description

Molecular Orbital Theory (MOT) provides an approximated solution to the Schrödinger
equation in the case of a polyatomic quantum system. In addition to the Born-Oppenheimer
and the independent electrons approximationa, the approach uses the further approximation
that the monoelectronic molecular wavefunctions Ψ can be described as a linear combination
of monoelectronic atomic orbitals ψ (LCAO).

Ψj =
n∑
i=1

cijψi (3)

with j ∈ [1 . . . n].

The coefficients are determined by substituting this equation in the Schrödinger equation
and by applying the variational principle which minimizes the energy of the system. In the
case of H+

2 , the wavefunctions have the form:

ΨH+
2

= c1Ψ1sA + c2Ψ1sB (4)

with (c1, c2 ∈ R).

We are thus looking for two sets of c1 and c2 as there will be the same number of molecular
wavefunctions as there are atomic wavefunctions.

The Schrödinger equation gives:

Ĥ
∣∣∣ΨH+

2

〉
= E

∣∣∣ΨH+
2

〉
(5)

and thus by projecting on each orbital we have
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
〈

Ψ1sA

∣∣∣Ĥ∣∣∣ΨH+
2

〉
= E

〈
Ψ1sA

∣∣∣ΨH+
2

〉〈
Ψ1sB

∣∣∣Ĥ∣∣∣ΨH+
2

〉
= E

〈
Ψ1sB

∣∣∣ΨH+
2

〉 (6)

which is equivalent to {∫
Ψ1sAĤΨH+

2
dτ = E

∫
Ψ1sAΨH+

2
dτ∫

Ψ1sBĤΨH+
2
dτ = E

∫
Ψ1sBΨH+

2
dτ

By injecting (4) into (6) we obtain{
〈Ψ1sA|Ĥ|c1Ψ1sA + c2Ψ1sB〉 = E 〈Ψ1sA|c1Ψ1sA + c2Ψ1sB〉
〈Ψ1sB |Ĥ|c1Ψ1sA + c2Ψ1sB〉 = E 〈Ψ1sB |c1Ψ1sA + c2Ψ1sB〉

(7)

By distributing we obtain:{
c1 〈Ψ1sA|Ĥ|Ψ1sA〉+ c2 〈Ψ1sA|Ĥ|Ψ1sB〉 = E(c1 〈Ψ1sA|Ψ1sA〉+ c2 〈Ψ1sA|Ψ1sB〉)
c1 〈Ψ1sB |Ĥ|Ψ1sA〉+ c2 〈Ψ1sB |Ĥ|Ψ1sB〉 = E(c1 〈Ψ1sB |Ψ1sA〉+ c2 〈Ψ1sB |Ψ1sB〉)

(8)

From this form we can note the following:

〈Ψ1sA|Ĥ|Ψ1sA〉 = 〈Ψ1sB |Ĥ|Ψ1sB〉 = α (9)

〈Ψ1sA|Ĥ|Ψ1sB〉 = 〈Ψ1sB |Ĥ|Ψ1sA〉 = β (10)

α and β are both called Hamiltonian integrals.

〈Ψ1sA|Ψ1sB〉 = 〈Ψ1sB |Ψ1sA〉 = S (11)

S corresponds to the overlap integral between both orbitals of each atom.

Furthermore
〈Ψ1sA|Ψ1sA〉 = 〈Ψ1sB |Ψ1sB〉 = 1 (12)

due to the fact that this integral corresponds to the probability of finding an electron in the
entire space, which must be equal to 1.

By simplifying (8) with all of these abbreviations, we obtain{
c1α + c2β = Ec1 + Ec2S

c1β + c2α = Ec1S + Ec2
(13)

which is equivalent to {
c1(α− E) + c2(β − ES) = 0

c1(β − ES) + c2(α− E) = 0
(14)

3



Therefore, we have obtained a system of two equations and three unknowns (c1, c2 and
E). There only exist solutions different from the trivial solution (c01=c

0
2=0) if the following

secular determinant is not equal to zero∣∣∣∣ α− E β − ES
β − ES α− E

∣∣∣∣ = 0 (15)

⇔ (α− E)2 − (β − ES)2 = 0 (16)

⇔ α− E = β − ES or α− E = −β − ES (17)

⇔ E− =
α− β
1− S

or E+ =
α + β

1 + S
(18)

Both of these solutions correspond to the energy levels of the two newly formed molecular
orbitals.

By substituting these energy values back into (14) we obtain with E−:{
c1(

β−αS
1−S ) + c2(

β−αS
1−S ) = 0

c1(
β−αS
1−S ) + c2(

β−αS
1−S ) = 0

(19)

⇔ c1 + c2 = 0 (20)

⇔ c1 = −c2 (21)

Proceeding in the same manner for E+ we obtain

c1 = c2 (22)

We have thus found the two wavefunctions we have been looking for

ΨH+
2 ,+

= c0(Ψ1sA + Ψ1sB) (23)

associated with E+ and
ΨH+

2 ,−
= c

′

0(Ψ1sA −Ψ1sB) (24)

associated with E−.

By normalizing these function under the condition that 〈Ψ|Ψ〉 = 1, we obtain for ΨH+
2 ,+

:

2c20 + 2c20S = 1 (25)

⇔ 2(1 + S)c20 = 1 (26)

⇔ c0 = ± 1√
2(1 + S)

(27)

And similarly for ΨH+
2 ,−

, we find

c′0 = ± 1√
2(1− S)

(28)
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In both cases, the positive and negative coefficients describe the same wavefunction, we can
only take positive values. Our final wavefunctions are thus

ΨH+
2 ,+

=
1√

2(1 + S)
(Ψ1sA + Ψ1sB) (29)

and

ΨH+
2 ,−

=
1√

2(1− S)
(Ψ1sA −Ψ1sB) (30)

Now, let’s have a closer look at α and β. Remember that in this problem

Ĥ = Ĥel + V̂NN = − ~2

2me

∇2 − e2

4πε0
(

1

rA
+

1

rB
) +

e2

4πε0a0
(31)

Therefore we have

α = 〈Ψ1si |−
~2

2me

∇2 − e2

4πε0ri
|Ψ1si〉+

e2

4πε0a0
〈Ψ1si |Ψ1si〉 − 〈Ψ1si |

e2

4πε0rj
|Ψ1si〉 (32)

β =
〈
Ψ1si

∣∣− ~2

2me

∇2 − e2

4πε0rj

∣∣Ψ1sj

〉
+

e2

4πε0a0

〈
Ψ1si

∣∣Ψ1sj

〉
−
〈
Ψ1si

∣∣ e2

4πε0ri

∣∣Ψ1sj

〉
(33)

with i ≡ A or B and j 6= i ≡ A or B

In α, the first term corresponds to the energy of an orbital 1s in a hydrogen atom EH .
The second term corresponds to the Coulomb repulsion of the two nuclei. The third term,
including the minus sign, is noted J and called the Coulomb integral.

In β, Ψ1SJ is an eigenvector of the operator in the first term with the eigenvalue EH . As
EH is a constant it factors out the integral which becomes the overlap integral S. Then, the
first term corresponds to EHS. The second term correspond to the product of the Coulomb
repulsion of the two nuclei and the overlap integral. The third term, including the minus
sign, is noted K and called the exchange integral.

Then we have

α = EH +
e2

4πε0a0
+ J (34)

and

β = EHS +
e2

4πε0a0
S +K (35)

By substituting α and β expressions in E+ and E− we found

E− =
1

1− S
[(EH +

e2

4πε0a0
)(1− S) + J −K] = EH +

e2

4πε0a0
+
J −K
1− S

(36)
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and

E+ =
1

1 + S
[(EH +

e2

4πε0a0
)(1 + S) + J +K] = EH +

e2

4πε0a0
+
J +K

1 + S
(37)

With further more exact considerations of the integrals J, K and S, and the study of the
terms involving them as a function of the inter-atomic distance a0, that will not be developed
here, it is possible to establish that

E+ < EH < E− (38)

These levels correspond to those in Figure 2 at equilibrium.
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