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1 An Approach to the Exact Solution

Solving the problem of the monoelectronic H, molecule is equivalent to solving the mo-
noelectronic part of the problem of the H, molecule with its two electrons based on the

independent electrons approximation.
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Figure 1: Schematic representation of the H; ion problem

The Born-Oppenheimer approximation states that one can decouple nuclear motion from
electronic motion due to the large mass difference between the nuclei and electrons. Under

this approximation, one can write the time-independent Schrodinger equation as follows:
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Here, VN ~ is a constant relative to the electron position.

(1) & H,¥ = B,

with E, = F — Vyxn which is a purely electronic energy.

(1)

One can solve the monoelectronic Schrodinger equation and then add the internuclear repul-
sion energy to determine to total energy of the system F, by utilizing an elliptical coordinate
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system. However, calculating the Laplace operator in these coordinates is complex and the
resolution must be done numerically for every value of ag. Two energetic functions are
obtained. This means that for each value of ag there are two possible states.
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Figure 2: Different energy levels obtained for the H ion as a function of internuclear distance

2 Molecular Orbital Theory Description

Molecular Orbital Theory (MOT) provides an approximated solution to the Schrodinger
equation in the case of a polyatomic quantum system. In addition to the Born-Oppenheimer
and the independent electrons approximationa, the approach uses the further approximation
that the monoelectronic molecular wavefunctions ¥ can be described as a linear combination
of monoelectronic atomic orbitals ¢ (LCAO).

U= ot (3)
i=1
with j € [1...n].
The coefficients are determined by substituting this equation in the Schrodinger equation
and by applying the variational principle which minimizes the energy of the system. In the

case of HJ , the wavefunctions have the form:

\I/H;r = ClqjlsA + 02\11153 (4)
with (c1, o € R).

We are thus looking for two sets of ¢; and ¢y as there will be the same number of molecular
wavefunctions as there are atomic wavefunctions.

The Schrodinger equation gives:
H)\IIH2+> :E‘\IJH2+> (5)

and thus by projecting on each orbital we have



1] W, ) = B {01, W) .
Wiy | H|W ) = B (W1oy W)

which is equivalent to

[ \I!lsA}:I\I/H;dT = B [ Wy, 0 dr
J U HY yodr = E [ Uy, 0,0 dr

By injecting (4) into (6) we obtain

<\IllsA’]:[’01\IjlsA +oVis,) = E(Vis, a1V, +c2Vis,)
(Wi, | Hlern Wi, + caVis,) = E(Vis,|c1Vis, + 2Wisy)

By distributing we obtain:
1 (W1, [H| Vg, ) + o (g, [H|W1y,) = Ecy (U1, [Prs,) + €2 (P, | Vi, ))
et (Wiap[HWis,) + o (Wisy [H|Vis,) = (e (Visg [Vis,) + 2 (Wisy | Wisy))
From this form we can note the following:
Wy, |H W1, ,) = (U, | H|y,) = o (9)

<\1115A|‘H|\Ij153> = <\P133|ﬁ|q115A> = (10)

a and 3 are both called Hamiltonian integrals.
<\I]18A|\11183> = <‘I!183‘\IJ18A> =S (11)

S corresponds to the overlap integral between both orbitals of each atom.

Furthermore

<\I115A’\I’15A> = <\P15B‘\1115B> =1 (12)
due to the fact that this integral corresponds to the probability of finding an electron in the
entire space, which must be equal to 1.

By simplifying (8) with all of these abbreviations, we obtain

i+ o = Ecy + EcyS (13)
a1+ coa = Eci S + Feg
which is equivalent to
cla—FE)+e(f—-ES)=0 (14)
a(B—ES)+c(a—FE)=0
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Therefore, we have obtained a system of two equations and three unknowns (c;, ¢; and

E). There only exist solutions different from the trivial solution (c?=c9=0) if the following

secular determinant is not equal to zero

a—E B-ES|
8-ES a-£|" " (15)
& (a—E?—(B—FES)?*=0 (16)
& a—E=p—-FES or a—E=—-—-FES (17)
& E_:(f:g or E+:(1)‘i§ (18)

Both of these solutions correspond to the energy levels of the two newly formed molecular
orbitals.

By substituting these energy values back into (14) we obtain with F_:

a(55) + () =0 (19)
01(61__0,‘5'5) + 02(61__%5) =0
& c1+c=0 (20)
<~ C1 = —C2 (21)
Proceeding in the same manner for £y we obtain
C1 = Cy (22)

We have thus found the two wavefunctions we have been looking for

Vg = co(Vis, + Visp) (23)

associated with £, and
\IJHQ*',— = CO(\IJlsA - \IjlsB) (24)

associated with F_.

By normalizing these function under the condition that (¥|¥) = 1, we obtain for ¥ HY 4

2¢ 4+ 2c2S =1 (25)
& 201+ 9 =1 (26)
1

& =t (27)

2(1+S5)

And similarly for ¥ Hi s WE find
1
== (28)
2(1—9)



In both cases, the positive and negative coefficients describe the same wavefunction, we can
only take positive values. Our final wavefunctions are thus

1
U = —(VUy, —I—\I/SB 29
Hy + 2(1+S)( 1sg 1 ) ( )
and 1
g = — (¥, —\I/sB 30
Hy — 2(1_5)( 1sa 1 ) ( )

Now, let’s have a closer look at v and . Remember that in this problem

h? o? e 1 1 e

H=Hy+Vyy=— — — 4+ — 31
L+ Vo 2m, dmeg'ra TR 4dmegag (31)
Therefore we have

h? e? e? e?

= (U, |— V2 — U, Ui [ Wie) — (W, U, 32

a= (¥, . 47760Ti’ 11>+4W€0a0< 161 W1s,) — 1147T€0Tj| 1s:) (32)
h? e? e? e?

= (U, |——V% — Uy, Uy, [0, ) — (U, |[——— |0y, 33

b < Lsi 2m, 47r607"j| 1”>+47r60a0< Lsi 1”> < 1l47r607"i| 1J> (33)

withi=AorBandj#i=AorB

In «, the first term corresponds to the energy of an orbital 1s in a hydrogen atom Ep.
The second term corresponds to the Coulomb repulsion of the two nuclei. The third term,
including the minus sign, is noted J and called the Coulomb integral.

In 8, Uyg; is an eigenvector of the operator in the first term with the eigenvalue Ey. As
Ey is a constant it factors out the integral which becomes the overlap integral S. Then, the
first term corresponds to Fy.S. The second term correspond to the product of the Coulomb
repulsion of the two nuclei and the overlap integral. The third term, including the minus
sign, is noted K and called the exchange integral.

Then we have

2
e
= 34
@ " + 471'60(10 ( )
and
o2
B=FEygS+ S+ K (35)
TEQQQ
By substituting a and f expressions in £, and E_ we found
1 e? e? J—-K
E =——F 1-9S)+J—-K|=F 36
1—5[( H+47T60a0)( )+ ] H+47T€0G0+ 1-5 ( )



and
1 e? e? J+ K
E,=——|(F 1+9+J+K|=F
* 1"—5[( H+47T€QCL0)< + )_'_ + ] H+47T€0(1,0 * 1+S

(37)

With further more exact considerations of the integrals J, K and S, and the study of the
terms involving them as a function of the inter-atomic distance ag, that will not be developed
here, it is possible to establish that

EL<Ey<E_ (38)

These levels correspond to those in Figure 2 at equilibrium.



